

LECTURE NOTES ON

INTRODUCTION TO BIG DATA (15A05506)

III B.TECH I SEMESTER

 (JNTUA-R15)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

2 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Introduction to Big Data

(15A05506)

SYLLABUS

Unit-1: Distributed programming using JAVA: Quick Recap and advanced Java Programming:

Generics, Threads, Sockets, Simple client server Programming using JAVA, Difficulties in

developing distributed programs for large scale clusters and introduction to cloud computing.

Unit-2: Distributed File systems leading to Hadoop file system, introduction, Using HDFS,

Hadoop Architecture, Internals of Hadoop File Systems.

Unit-3: Map-Reduce Programming: Developing Distributed Programs and issues, why map-

reduce and conceptual understanding of Map-Reduce programming, Developing Map-Reduce

programs in Java, setting up the cluster with HDFS and understanding how Map- Reduce works

on HDFS, Running simple word count Map-Reduce program on the cluster, Additional examples

of M-R Programming.

Unit-4: Anatomy of Map-Reduce Jobs: Understanding how Map- Reduce program works, tuning

Map-Reduce jobs, Understanding different logs produced by Map-Reduce jobs and debugging

the Map- Reduce jobs.

Unit-5: Case studies of Big Data analytics using Map-Reduce programming: K-Means

clustering, using Big Data analytics libraries using Mahout.

Text Books:

1. JAVA in a Nutshell 4th Edition.

2. Hadoop: The definitive Guide by Tom White, 3rd Edition, O'reily.

References:

1. Hadoop in Action by Chuck Lam, Manning Publications.

3 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Unit-1

Java is a high-level programming language originally developed by Sun Microsystems and

released in 1995. Java runs on a variety of platforms, such as Windows, Mac OS, and the

various versions of UNIX. The following are some of the salient features of Java Programming

language.

 Object Oriented − In Java, everything is an Object. Java can be easily extended since it

is based on the Object model.

 Platform Independent − Unlike many other programming languages including C and

C++, when Java is compiled, it is not compiled into platform specific machine, rather

into platform independent byte code. This byte code is distributed over the web and

interpreted by the Virtual Machine (JVM) on whichever platform it is being run on.

 Simple − Java is designed to be easy to learn. If you understand the basic concept of

OOP Java, it would be easy to master.

 Secure − With Java's secure feature it enables to develop virus-free, tamper- free

systems. Authentication techniques are based on public-key encryption.

 Architecture-neutral − Java compiler generates an architecture-neutral object file

format, which makes the compiled code executable on many processors, with the

presence of Java runtime system.

 Portable − Being architecture-neutral and having no implementation dependent aspects

of the specification makes Java portable. Compiler in Java is written in ANSI C with a

clean portability boundary, which is a POSIX subset.

 Robust − Java makes an effort to eliminate error prone situations by emphasizing mainly

on compile time error checking and runtime checking.

 Multithreaded − With Java's multithreaded feature it is possible to write programs that

can perform many tasks simultaneously. This design feature allows the developers to

construct interactive applications that can run smoothly.

 Interpreted − Java byte code is translated on the fly to native machine instructions and is

not stored anywhere. The development process is more rapid and analytical since the

linking is an incremental and light-weight process.

4 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

 High Performance − With the use of Just-In-Time compilers, Java enables high

performance.

 Distributed − Java is designed for the distributed environment of the internet.

 Dynamic − Java is considered to be more dynamic than C or C++ since it is designed to

adapt to an evolving environment. Java programs can carry extensive amount of run-

time information that can be used to verify and resolve accesses to objects on run-time.

Multithreading in java is a process of executing multiple threads simultaneously. Thread is

basically a lightweight sub-process, a smallest unit of processing. Multiprocessing and

multithreading, both are used to achieve multitasking. But we use multithreading than

multiprocessing because threads share a common memory area. They don't allocate separate

memory area so saves memory, and context- switching between the threads takes less time than

process. Java Multithreading is mostly used in games, animation etc.

Advantages of Java Multithreading

1) It doesn't block the user because threads are independent and you can perform multiple operations at

same time.

2) You can perform many operations together so it saves time.

3) Threads are independent so it doesn't affect other threads if exception occurs in a single thread.

Multitasking is a process of executing multiple tasks simultaneously. We use multitasking to

utilize the CPU. Multitasking can be achieved by two ways:

o Process-based Multitasking(Multiprocessing)

o Thread-based Multitasking(Multithreading)

1) Process-based Multitasking (Multiprocessing)

o Each process have its own address in memory i.e. each process allocates

separate memory area.

o Process is heavyweight.

5 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

o Cost of communication between the process is high.

o Switching from one process to another require some time for saving and loading

registers, memory maps, updating lists etc.

2) Thread-based Multitasking (Multithreading)

o Threads share the same address space.

o Thread is lightweight.

o Cost of communication between the thread is low.

A thread is a lightweight sub process, a smallest unit of processing. It is a separate path of

execution.

Threads are independent, if there occurs exception in one thread, it doesn't affect other threads. It

shares a common memory area.

Java Thread class

Thread class is the main class on which java's multithreading system is based. Thread class

provide constructors and methods to create and perform operations on a thread. Thread class

extends Object class and implements Runnable interface.

Java Thread Methods

S.N. Modifierand

Type

Method Description

1

void

run()

It is used to perform action for a

thread.

2

void

start()

It starts the execution of the

thread.JVM calls the run() method on

the thread.

3

static void

sleep(long

miliseconds)

It sleeps a thread for the specified

amount of time.

6 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

4

void

join(long

miliseconds)

It waits for a thread to die.

5

int

getPriority()

It returns the priority of the thread.

6

void

setPriority(int

priority)

It changes the priority of the

thread.

7

String

getName()

It returns the name of the thread.

8

void

setName(String

name)

It changes the name of the thread.

9

static Thread

currentThread()

It returns the reference of currently

executing thread.

10

long

getId()

It returns the id of the thread.

11

boolean

isAlive()

It tests if the thread is alive.

12

static void

yield()

It causes the currently executing

thread object to temporarily pause

and allow other threads to execute.

13

void

suspend()

It is used to suspend the thread.

14

void

resume()

It is used to resume the suspended

thread.

15

void

stop()

It is used to stop the thread.

7 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

16

boolean

isDaemon()

It tests if the thread is a daemon

thread.

17

void

setDaemon(Boolean

on)

It marks the thread as daemon or

user thread.

18

void

interrupt()

It interrupts the thread.

19

static boolean

interrupted()

It tests if the current thread has

been interrupted.

20

boolean

isInterrupted()

It tests if the thread has been

interrupted.

21

static int

activeCount()

It returns the number of active

threads in the current thread's thread

group.

22

void

checkAccess()

It determines if the currently running

thread has permission to modify this

thread.

23

protected Object

clone()

It returns a clone if the class of this

object is Cloneable.

24

static void

dumpStack()

It is used to print a stack trace of the

current thread to the standard error

stream.

8 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

25

Thread.State

getState()

It is used to return the state of the

thread.

9 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

26

ThreadGroup

getThreadGroup()

It is used to return the thread group

to which this thread belongs

27

String

toString()

It is used to return a string

representation of this thread,

including the thread's name, priority,

and thread group.

Java Networking is a concept of connecting two or more computing devices together so that we can

share resources. Java socket programming provides facility to share data between different computing

devices.

Advantage of Java Networking

1. sharing resources

2. centralize software management

The widely used java networking terminologies are given below:

1. IP Address

2. Protocol

3. Port Number

4. MAC Address

5. Connection-oriented and connection-less protocol

6. Socket

1) IP Address

IP address is a unique number assigned to a node of a network e.g. 192.168.0.1 . It is composed

of octets that range from 0 to 255.

It is a logical address that can be changed.

2) Protocol

10 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

A protocol is a set of rules basically that is followed for communication. For example:

o TCP

o FTP

o Telnet

o SMTP

o POP etc.

3) Port Number

The port number is used to uniquely identify different applications. It acts as a communication

endpoint between applications.

The port number is associated with the IP address for communication between two applications.

4) MAC Address

MAC (Media Access Control) Address is a unique identifier of NIC (Network Interface

Controller). A network node can have multiple NIC but each with unique MAC.

5) Connection-oriented and connection-less protocol

In connection-oriented protocol, acknowledgement is sent by the receiver. So it is reliable but

slow. The example of connection-oriented protocol is TCP.

But, in connection-less protocol, acknowledgement is not sent by the receiver. So it is not

reliable but fast. The example of connection-less protocol is UDP.

6) Socket

A socket is an endpoint between two way communication.

Java Socket Programming

Java Socket programming is used for communication between the applications running on

different JRE.

Java Socket programming can be connection-oriented or connection-less.

Socket and ServerSocket classes are used for connection-oriented socket programming and

DatagramSocket and DatagramPacket classes are used for connection-less socket programming.

The client in socket programming must know two information:

1. IP Address of Server, and

11 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

2. Port number.

Socket class

A socket is simply an endpoint for communications between the machines. The Socket class can

be used to create a socket.

Important methods

Method

Description

1) public

getInputStream()

InputStream

returns the InputStream attached with this

socket.

2) public

getOutputStream()

OutputStream

returns the OutputStream attached with this

socket.

3) public synchronized void close()

closes this socket

ServerSocket class

The ServerSocket class can be used to create a server socket. This object is used to establish

communication with the clients.

Important methods

Method Description

1) public Socket accept()

returns the socket and establish a connection between

server and client.

2) public synchronized void

close()

closes the server socket.

Example of Java Socket Programming

12 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Let's see a simple of java socket programming in which client sends a text and server
receives it.

File: MyServer.java

1. import java.io.*;

2. import java.net.*;

3. public class MyServer {

4. public static void main(String[] args){

5. try{

6. ServerSocket ss=new ServerSocket(6666);

7. Socket s=ss.accept();//establishes connection

8. DataInputStream dis=new DataInputStream(s.getInputStream());

9. String str=(String)dis.readUTF();

10. System.out.println("message= "+str);

11. ss.close();

12. }catch(Exception e){System.out.println(e);}

13. }

14. }

File: MyClient.java

1. import java.io.*;

2. import java.net.*;

3. public class MyClient {

4. public static void main(String[] args) {

5. try{

6. Socket s=new Socket("localhost",6666);

7. DataOutputStream dout=new DataOutputStream(s.getOutputStream());

8. dout.writeUTF("Hello Server");

9. dout.flush();

10. dout.close();

11. s.close();

12. }catch(Exception e){System.out.println(e);}

13. }

14. }

download this example

13 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

To execute this program open two command prompts and execute each program at each
command prompt as displayed in the below figure.

After running the client application, a message will be displayed on the server console.

Example of Java Socket Programming (Read-Write both side)

In this example, client will write first to the server then server will receive and print the text.

Then server will write to the client and client will receive and print the text. The step goes on.

File: MyServer.java

1. import java.net.*;

2. import java.io.*;

3. class MyServer{

4. public static void main(String args[])throws Exception{

5. ServerSocket ss=new ServerSocket(3333);

6. Socket s=ss.accept();

7. DataInputStream din=new DataInputStream(s.getInputStream());

8. DataOutputStream dout=new DataOutputStream(s.getOutputStream());

9. BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); 10.

11. String str="",str2="";

12. while(!str.equals("stop")){

13. str=din.readUTF();

14. System.out.println("client says: "+str);

15. str2=br.readLine();

16. dout.writeUTF(str2);

17. dout.flush();

18. }

19. din.close();

20. s.close();

21. ss.close();

22. }}

14 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

File: MyClient.java

1. import java.net.*;

2. import java.io.*;

3. class MyClient{

4. public static void main(String args[])throws Exception{

5. Socket s=new Socket("localhost",3333);

6. DataInputStream din=new DataInputStream(s.getInputStream());

7. DataOutputStream dout=new DataOutputStream(s.getOutputStream());

8. BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); 9.

10. String str="",str2="";

11. while(!str.equals("stop")){

12. str=br.readLine();

13. dout.writeUTF(str);

14. dout.flush();

15. str2=din.readUTF();

16. System.out.println("Server says: "+str2);

17. }

18.

19. dout.close();

20. s.close();

21. }}

Generics

generics enable types (classes and interfaces) to be parameters when defining classes,

interfaces and methods. Much like the more familiar formal

parameters used in method declarations, type parameters provide a way for you to re-use the

same code with different inputs. The difference is that the inputs to formal parameters are

values, while the inputs to type parameters are types.

Code that uses generics has many benefits over non-generic code:

 Stronger type checks at compile time.

A Java compiler applies strong type checking to generic code and issues errors if the

code violates type safety. Fixing compile-time errors is easier than fixing runtime

errors, which can be difficult to find.

15 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

 Elimination of casts.
The following code snippet without generics requires casting:

 List list = new ArrayList();
 list.add("hello");

 String s = (String) list.get(0);

When re-written to use generics, the code does not require casting:

List<String> list = new ArrayList<String>();

list.add("hello");
String s = list.get(0); // no cast

 Enabling programmers to implement generic algorithms.

By using generics, programmers can implement generic algorithms that work on

collections of different types, can be customized, and are type safe and easier to read.

Generic Types

A generic type is a generic class or interface that is parameterized over types. The following

Boxclass will be modified to demonstrate the concept.

A Simple Box Class

Begin by examining a non-generic Boxclass that operates on objects of any type. It needs only to

provide two methods: set, which adds an object to the box, and get, which retrieves it:

public class Box {

private Object object;

public void set(Object object) { this.object = object; } public Object

get() { return object; }

}

Since its methods accept or return an Object, you are free to pass in whatever you want, provided

that it is not one of the primitive types. There is no way to verify, at compile time, how the class

is used. One part of the code may place an Integer in the box and expect to get Integers out of it,

while another part of the code may mistakenly pass in a String, resulting in a runtime error.

A Generic Version of the Box Class

A generic class is defined with the following format:

class name<T1, T2, ..., Tn> { /* ... */ }

The type parameter section, delimited by angle brackets (<>), follows the class name. It specifies

the type parameters (also called type variables) T1, T2, ..., and Tn.

16 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

To update the Box class to use generics, you create a generic type declaration by changing the

code "public class Box" to "public class Box<T>". This introduces the type variable, T, that

can be used anywhere inside the class.

With this change, the Box class becomes:

/**
* Generic version of the Box class.
* @param <T> the type of the value being boxed
*/

public class Box<T> {
// T stands for "Type"

private T t;

public void set(T t) { this.t = t; } public T

get() { return t; }

}

As you can see, all occurrences of Object are replaced by T. A type variable can be any non-

primitive type you specify: any class type, any interface type, any array type, or even another

type variable.

This same technique can be applied to create generic interfaces.

Type Parameter Naming Conventions

By convention, type parameter names are single, uppercase letters. This stands in sharp contrast

to the variable conventions that you already know about, and with good reason: Without this

convention, it would be difficult to tell the difference between a type variable and an ordinary

class or interface name.

The most commonly used type parameter names are:

 E - Element (used extensively by the Java Collections Framework)
 K - Key
 N - Number
 T - Type

 V - Value

 S,U,V etc. - 2nd, 3rd, 4th types

You'll see these names used throughout the Java SE API and the rest of this lesson.

Invoking and Instantiating a Generic Type

To reference the generic Box class from within your code, you must perform a generic type

invocation, which replaces T with some concrete value, such as Integer:

17 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Box<Integer> integerBox;

You can think of a generic type invocation as being similar to an ordinary method invocation,

but instead of passing an argument to a method, you are passing a type argument — Integer in

this case — to the Box class itself.

Type Parameter and Type Argument Terminology: Many developers use the terms "type

parameter" and "type argument" interchangeably, but these terms are not the same. When

coding, one provides type arguments in order to create a parameterized type. Therefore, the T in

Foo<T> is a type parameter and the String in Foo<String> f is a type argument. This lesson

observes this definition when using these terms.

Like any other variable declaration, this code does not actually create a new Box object. It

simply declares that integerBox will hold a reference to a "Box of Integer", which is how

Box<Integer> is read.

An invocation of a generic type is generally known as a parameterized type.

To instantiate this class, use the new keyword, as usual, but place <Integer>between the class

name and the parenthesis:

Box<Integer> integerBox = new Box<Integer>();

The Diamond

In Java SE 7 and later, you can replace the type arguments required to invoke the constructor of

a generic class with an empty set of type arguments (<>) as long as the compiler can determine,

or infer, the type arguments from the context. This pair of angle brackets, <>, is informally

called the diamond. For example, you can create an instance of Box<Integer> with the following

statement:

Box<Integer> integerBox = new Box<>();

18 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Multiple Type Parameters

As mentioned previously, a generic class can have multiple type parameters. For example,

the generic OrderedPair class, which implements the generic Pair interface:

public interface Pair<K, V> { public

K getKey(); public V

getValue();

}

public class OrderedPair<K, V> implements Pair<K, V> { private K key;
private V value;

public OrderedPair(K key, V value) {

this.key = key;
this.value = value;

}

public K getKey() { return key; } public V

getValue() { return value; }

}

The following statements create two instantiations of the OrderedPair class:

Pair<String, Integer> p1 = new OrderedPair<String, Integer>("Even", 8); Pair<String, String>

p2 = new OrderedPair<String, String>("hello", "world");

The code, new OrderedPair<String, Integer>, instantiates K as a String and V as an Integer.

Therefore, the parameter types of OrderedPair's constructor are String and Integer, respectively.

Due to autoboxing, it is valid to pass a String and an int to the class.

As mentioned in The Diamond, because a Java compiler can infer the K and V types from the

declaration OrderedPair<String, Integer>, these statements can be shortened using diamond

notation:

OrderedPair<String, Integer> p1 = new OrderedPair<>("Even", 8); OrderedPair<String, String>

p2 = new OrderedPair<>("hello", "world");

To create a generic interface, follow the same conventions as for creating a generic class.

Parameterized Types

You can also substitute a type parameter (i.e., K or V) with a parameterized type (i.e.,

List<String>). For example, using the OrderedPair<K, V> example:

OrderedPair<String, Box<Integer>> p = new OrderedPair<>("primes", new Box<Integer>(...));

19 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Raw Types

A raw type is the name of a generic class or interface without any type arguments. For example,

given the generic Box class:

public class Box<T> {

public void set(T t) { /* ... */ }
// ...

}

To create a parameterized type of Box<T>, you supply an actual type argument for the formal

type parameter T:

Box<Integer> intBox = new Box<>();

If the actual type argument is omitted, you create a raw type of Box<T>:

Box rawBox = new Box();

Therefore, Box is the raw type of the generic type Box<T>. However, a non-generic class or

interface type is not a raw type.

Raw types show up in legacy code because lots of API classes (such as the Collections

classes) were not generic prior to JDK 5.0. When using raw types, you essentially get pre-

generics behavior — a Box gives you Objects. For backward compatibility, assigning a

parameterized type to its raw type is allowed:

Box<String> stringBox = new Box<>();

Box rawBox = stringBox; // OK

But if you assign a raw type to a parameterized type, you get a warning:

Box rawBox = new Box(); // rawBox is a raw type of Box<T>

Box<Integer> intBox = rawBox; // warning: unchecked conversion

You also get a warning if you use a raw type to invoke generic methods defined in the

corresponding generic type:

Box<String> stringBox = new Box<>(); Box

rawBox = stringBox;

rawBox.set(8); // warning: unchecked invocation to set(T)

The warning shows that raw types bypass generic type checks, deferring the catch of unsafe

code to runtime. Therefore, you should avoid using raw types.

20 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Unchecked Error Messages

As mentioned previously, when mixing legacy code with generic code, you may encounter

warning messages similar to the following:

Note: Example.java uses unchecked or unsafe operations.

This can happen when using an older API that operates on raw types, as shown in the following example:

public class WarningDemo {

public static void main(String[] args){

Box<Integer> bi;
bi = createBox();

}

static Box createBox(){

return new Box();
}

}

The term "unchecked" means that the compiler does not have enough type information to

perform all type checks necessary to ensure type safety. The "unchecked" warning is disabled, by

default, though the compiler gives a hint. To see all "unchecked" warnings, recompile with -

Xlint:unchecked.

Recompiling the previous example with -Xlint:uncheckedreveals the following additional information:

WarningDemo.java:4: warning: [unchecked] unchecked conversion found

 : Box

required: Box<java.lang.Integer> bi =

createBox();
^

1 warning

21 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Unit-2:

Distributed File System Basics

A distributed file system is designed to hold a large amount of data and provide access to this

data to many clients distributed across a network. There are a number of distributed file systems

that solve this problem in different ways.

NFS, the Network File System, is the most ubiquitous distributed file system. It is one of the

oldest still in use. While its design is straightforward, it is also very constrained. NFS provides

remote access to a single logical volume stored on a single machine. An NFS server makes a

portion of its local file system visible to external clients. The clients can then mount this remote

file system directly into their own Linux file system, and interact with it as though it were part of

the local drive.

One of the primary advantages of this model is its transparency. Clients do not need to be

particularly aware that they are working on files stored remotely. The existing standard library

methods like open(), close(), fread(), etc. will work on files hosted over NFS.

But as a distributed file system, it is limited in its power. The files in an NFS volume all reside

on a single machine. This means that it will only store as much information as can be stored in

one machine, and does not provide any reliability guarantees if that machine goes down (e.g.,

by replicating the files to other servers). Finally, as all the data is stored on a single machine, all

the clients must go to this machine to retrieve their data. This can overload the server if a large

number of clients must be handled. Clients must also always copy the data to their local

machines before they can operate on it.

HDFS is designed to be robust to a number of the problems that other DFS's such as NFS are

vulnerable to. In particular:

 HDFS is designed to store a very large amount of information (terabytes or petabytes). This

requires spreading the data across a large number of machines. It also supports much larger

file sizes than NFS.

 HDFS should store data reliably. If individual machines in the cluster malfunction, data

should still be available.

 HDFS should provide fast, scalable access to this information. It should be possible to serve

a larger number of clients by simply adding more machines to the cluster.

22 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

 HDFS should integrate well with Hadoop MapReduce, allowing data to be read and

computed upon locally when possible.

But while HDFS is very scalable, its high performance design also restricts it to a particular class

of applications; it is not as general-purpose as NFS. There are a large number of additional

decisions and trade-offs that were made with HDFS. In particular:

 Applications that use HDFS are assumed to perform long sequential streaming reads from

files. HDFS is optimized to provide streaming read performance; this comes at the expense

of random seek times to arbitrary positions in files.

 Data will be written to the HDFS once and then read several times; updates to files after

they have already been closed are not supported. (An extension to Hadoop will provide

support for appending new data to the ends of files; it is scheduled to be included in Hadoop

0.19 but is not available yet.)

 Due to the large size of files, and the sequential nature of reads, the system does not provide

a mechanism for local caching of data. The overhead of caching is great enough that data

should simply be re-read from HDFS source.

 Individual machines are assumed to fail on a frequent basis, both permanently and intermittently. The

cluster must be able to withstand the complete failure of several machines, possibly many

happening at the same time (e.g., if a rack fails all together). While performance may degrade

proportional to the number of machines lost, the system as a whole should not become overly slow, nor

should information be lost. Data replication strategies combat this problem.

HDFS Architecture

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on

commodity hardware. It has many similarities with existing distributed file systems. However, the

differences from other distributed file systems are significant. HDFS is highly fault-tolerant and is

designed to be deployed on low-cost hardware. HDFS provides high throughput access to

application data and is suitable for applications that have large data sets. HDFS relaxes a few POSIX

requirements to enable streaming access to file system data. HDFS was originally built as

infrastructure for the Apache Nutch web search engine project.

23 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Hardware failure is the norm rather than the exception. An HDFS instance may consist of hundreds or

thousands of server machines, each storing part of the file system’s data. The fact that there are a huge number

of components and that each component has a non-trivial probability of failure means that some component

of HDFS is always non- functional. Therefore, detection of faults and quick, automatic recovery from them is

a core architectural goal of HDFS.

Applications that run on HDFS need streaming access to their data sets. They are not general purpose

applications that typically run on general purpose file systems. HDFS is designed more for batch

processing rather than interactive use by users. The emphasis is on high throughput of data access rather

than low latency of data access. POSIX imposes many hard requirements that are not needed for

applications that are targeted for HDFS. POSIX semantics in a few key areas has been traded to increase

data throughput rates.

Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes to terabytes in

size. Thus, HDFS is tuned to support large files. It should provide high aggregate data bandwidth and

scale to hundreds of nodes in a single cluster. It should support tens of millions of files in a single

instance.

HDFS applications need a write-once-read-many access model for files. A file once created, written, and

closed need not be changed except for appends and truncates. Appending the content to the end of the

files is supported but cannot be updated at arbitrary point. This assumption simplifies data coherency

issues and enables high throughput data access. A MapReduce application or a web crawler application

fits perfectly with this model.

A computation requested by an application is much more efficient if it is executed near the data it operates on.

This is especially true when the size of the data set is huge. This minimizes network congestion and increases

the overall throughput of the system. The assumption is that it is often better to migrate the computation

closer to where the data is located rather than moving the data to where the application is running. HDFS

provides interfaces for applications to move themselves closer to where the data is located.

HDFS has been designed to be easily portable from one platform to another. This facilitates

widespread adoption of HDFS as a platform of choice for a large set of applications.

24 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

HDFS Architecture

The HDFS namespace is stored by the NameNode. The NameNode uses a transaction log called the

EditLog to persistently record every change that occurs to file system metadata. For example, creating a new

file in HDFS causes the NameNode to insert a record into the EditLog indicating this. Similarly, changing the

replication factor of a file causes a new record to be inserted into the EditLog. The NameNode uses a file in its

local host OS file system to store the EditLog. The entire file system namespace, including the mapping of

blocks to files and file system properties, is stored in a file called the FsImage. The FsImage is stored as a file in

the NameNode’s local file system too.

The DataNode stores HDFS data in files in its local file system. The DataNode has no knowledge about

HDFS files. It stores each block of HDFS data in a separate file in its local file system. The DataNode does not

create all files in the same directory. Instead, it uses a heuristic to determine the optimal number of files per

25 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

directory and creates subdirectories appropriately. It is not optimal to create all local files in the same directory

because the local file system might not be able to efficiently support a huge number of files in a single

directory. When a DataNode starts up, it scans through its local file system, generates a list of all HDFS data

blocks that correspond to each of these local files, and sends this report to the NameNode. The report

is called the Blockreport. HDFS is designed to support very large files. Applications that are compatible with

HDFS are those that deal with large data sets. These applications write their data only once but they read it one

or more times and require these reads to be satisfied at streaming speeds. HDFS supports write-once-read-

many semantics on files. A typical block size used by HDFS is 128 MB. Thus, an HDFS file is chopped up into

128 MB chunks, and if possible, each chunk will reside on a different DataNode.

When a client is writing data to an HDFS file with a replication factor of three, the NameNode retrieves

a list of DataNodes using a replication target choosing algorithm. This list contains the DataNodes that will host

a replica of that block. The client then writes to the first DataNode. The first DataNode starts receiving the data

in portions, writes each portion to its local repository and transfers that portion to the second DataNode in the

list. The second DataNode, in turn starts receiving each portion of the data block, writes that portion to its

repository and then flushes that portion to the third DataNode. Finally, the third DataNode writes the data to its

local repository. Thus, a DataNode can be receiving data from the previous one in the pipeline and at the same

time forwarding data to the next one in the pipeline. Thus, the data is pipelined from one DataNode to the next.

Configuring HDFS

The HDFS for your cluster can be configured in a very short amount of time. First we will fill out the

relevant sections of the Hadoop configuration file, then format the NameNode.

CLUSTER CONFIGURATION

The HDFS configuration is located in a set of XML files in the Hadoop configuration directory; conf/

under the main Hadoop install directory (where you unzipped Hadoop to). The conf/hadoop-defaults.xml file

contains default values for every parameter in Hadoop. This file is considered read-only. You override this

configuration by setting new values in conf/hadoop-site.xml. This file should be replicated consistently across

all machines in the cluster. (It is also possible, though not advisable, to host it on NFS.)

Configuration settings are a set of key-value pairs of the format:

<property>

<name>property-name</name>

26 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

<value>property-value</value>

</property>

Adding the line <final>true</final> inside the property body will prevent properties from being

overridden by user applications. This is useful for most system- wide configuration options.

describes the NameNode for the cluster. Each node in the system on which Hadoop is expected to operate needs

to know the address of the NameNode. The DataNode instances will register with this NameNode, and make

their data available through it. Individual client programs will connect to this address to retrieve the locations of

actual file blocks.

dfs.data.dir - This is the path on the local file system in which the DataNode instance should store its

data. It is not necessary that all DataNode instances store their data under the same local path prefix, as they will

all be on separate machines; it is acceptable that these machines are heterogeneous. However, it will simplify

configuration if this directory is standardized throughout the system. By default, Hadoop will place this under

/tmp. This is fine for testing purposes, but is an easy way to lose actual data in a production system, and thus

must be overridden.

dfs.name.dir - This is the path on the local file system of the NameNode instance where the NameNode

metadata is stored. It is only used by the NameNode instance to find its information, and does not exist on

the DataNodes. The caveat above about /tmp applies to this as well; this setting must be overridden in a

production system.

Another configuration parameter, not listed above, is dfs.replication. This is the default replication

factor for each block of data in the file system. For a production cluster, this should usually be left at its default

value of 3. (You are free to increase your replication factor, though this may be unnecessary and use more space

than is required. Fewer than three replicas impact the high availability of information, and possibly the reliability

of its storage.)

The following information can be pasted into the hadoop-site.xml file for a single- node configuration:

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://your.server.name.com:9000</value>

</property>

27 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

<property>

<name>dfs.data.dir</name>

<value>/home/username/hdfs/data</value>

</property>

<property>

<name>dfs.name.dir</name>

<value>/home/username/hdfs/name</value>

</property>

</configuration>

Of course, your.server.name.com needs to be changed, as does username. Using port 9000 for the

NameNode is arbitrary.

After copying this information into your conf/hadoop-site.xml file, copy this to the conf/ directories

on all machines in the cluster.

The master node needs to know the addresses of all the machines to use as DataNodes; the startup

scripts depend on this. Also in the conf/ directory, edit the file slaves so that it contains a list of fully-

qualified hostnames for the slave instances, one host per line. On a multi-node setup, the master node (e.g.,

localhost) is not usually present in this file.

Then make the directories necessary:

user@EachMachine$ mkdir -p $HOME/hdfs/data

user@namenode$ mkdir -p $HOME/hdfs/name

The user who owns the Hadoop instances will need to have read and write access

28 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

to each of these directories. It is not necessary for all users to have access to these directories. Set permissions

with chmod as appropriate. In a large-scale environment, it is recommended that you create a user named

"hadoop" on each node for the express purpose of owning and running Hadoop tasks. For a single individual's

machine, it is perfectly acceptable to run Hadoop under your own username. It is not recommended that you run

Hadoop as root.

The Persistence of File System Metadata

The HDFS namespace is stored by the NameNode. The NameNode uses a transaction log called the

EditLog to persistently record every change that occurs to file system metadata. For example, creating a new

file in HDFS causes the NameNode to insert a record into the EditLog indicating this. Similarly, changing the

replication factor of a file causes a new record to be inserted into the EditLog. The NameNode uses a file in its

local host OS file system to store the EditLog. The entire file system namespace, including the mapping of

blocks to files and file system properties, is stored in a file called the FsImage. The FsImage is stored as a file in

the NameNode’s local file system too.

The NameNode keeps an image of the entire file system namespace and file Blockmap in memory.

When the NameNode starts up, or a checkpoint is triggered by a configurable threshold, it reads the FsImage

and EditLog from disk, applies all the transactions from the EditLog to the in-memory representation of the

FsImage, and flushes out this new version into a new FsImage on disk. It can then truncate the old EditLog

because its transactions have been applied to the persistent FsImage. This process is called a checkpoint. The

purpose of a checkpoint is to make sure that HDFS has a consistent view of the file system metadata by

taking a snapshot of the file system metadata and saving it to FsImage. Even though it is efficient to read a

FsImage, it is not efficient to make incremental edits directly to a FsImage. Instead of modifying FsImage for

each edit, we persist the edits in the Editlog. During the checkpoint the changes from Editlog are applied to the

FsImage. A checkpoint can be triggered at a given time interval (dfs.namenode.checkpoint.period) expressed in

seconds, or after a given number of filesystem transactions have accumulated (dfs.namenode.checkpoint.txns).

If both of these properties are set, the first threshold to be reached triggers a checkpoint.

The DataNode stores HDFS data in files in its local file system. The DataNode has no knowledge about

HDFS files. It stores each block of HDFS data in a separate file in its local file system. The DataNode does not

create all files in the same directory. Instead, it uses a heuristic to determine the optimal number of files per

directory and creates subdirectories appropriately. It is not optimal to create all local files in the same directory

because the local file system might not be able to efficiently support a huge number of files in a single

directory. When a DataNode starts up, it scans through its local file system, generates a list of all HDFS data

blocks that correspond to each of these local files, and sends this report to the NameNode. The report

is called the Blockreport.

The Communication Protocols

All HDFS communication protocols are layered on top of the TCP/IP protocol. A client establishes a

connection to a configurable TCP port on the NameNode machine. It talks the ClientProtocol with the

29 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

NameNode. The DataNodes talk to the NameNode using the DataNode Protocol. A Remote Procedure Call

(RPC) abstraction wraps both the Client Protocol and the DataNode Protocol. By design, the NameNode never

initiates any RPCs. Instead, it only responds to RPC requests issued by DataNodes or clients.

Robustness

The primary objective of HDFS is to store data reliably even in the presence of failures. The three

common types of failures are NameNode failures, DataNode failures and network partitions.

Using HDFS Programmatically while HDFS can be manipulated explicitly through user commands,

or implicitly as the input to or output from a Hadoop MapReduce job, you can also work with HDFS

inside your own Java applications.

1: import java.io.File;

2: import java.io.IOException;

3:

4: import org.apache.hadoop.conf.Configuration;

5: import org.apache.hadoop.fs.FileSystem;

6: import org.apache.hadoop.fs.FSDataInputStream;

7: import org.apache.hadoop.fs.FSDataOutputStream;

8: import org.apache.hadoop.fs.Path;

9:

10: public class HDFSHelloWorld { 11:

12: public static final String theFilename = "hello.txt";

13: public static final String message = "Hello, world!\n";

14:

15: public static void main (String [] args) throws IOException {

16:

17: Configuration conf = new Configuration();

18: FileSystem fs = FileSystem.get(conf);

30 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

19:

20: Path filenamePath = new Path(theFilename);

 21:

22: try {

23: if (fs.exists(filenamePath)) {

 24: // remove the file first

25: fs.delete(filenamePath);

26: }

27:

28: FSDataOutputStream out = fs.create(filenamePath);

29: out.writeUTF(message;

30: out.close();

31:

32: FSDataInputStream in = fs.open(filenamePath);

 33: String messageIn = in.readUTF();

34: System.out.print(messageIn);

35: in.close();

36: } catch (IOException ioe) {

37: System.err.println("IOException during operation: " + ioe.toString()); System.exit(1);

38: }

39: }

40: }

This program creates a file named hello.txt, writes a short message into it, then reads it back and prints it

to the screen. If the file already existed, it is deleted first.

31 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

First we get a handle to an abstract FileSystem object, as specified by the application configuration.

The Configuration object created uses the default parameters.

 Configuration conf = new Configuration();

FileSystem fs = FileSystem.get(conf);

The FileSystem interface actually provides a generic abstraction suitable for use in several file systems.

Depending on the Hadoop configuration, this may use HDFS or the local file system or a different one

altogether. If this test program is launched via the ordinary 'java classname' command line, it may not find

conf/hadoop-site.xml and will use the local file system. To ensure that it uses the proper Hadoop configuration,

launch this program through Hadoop by putting it in a jar and running:

$HADOOP_HOME/bin/hadoop jar yourjar HDFSHelloWorld

Regardless of how you launch the program and which file system it connects to, writing to a file is done in

the same way:

 FSDataOutputStream out = fs.create(filenamePath);

 out.writeUTF(message);

 out.close();

First we create the file with the fs.create() call, which returns an FSDataOutputStream

used to write data into the file. We then write the information using ordinary stream writing

functions; FSDataOutputStreamextends the java.io.DataOutputStream class. When we are done with the

file, we close the stream with out.close().

This call to fs.create() will overwrite the file if it already exists, but for sake of example, this program

explicitly removes the file first anyway (note that depending on this explicit prior removal is technically a race

condition). Testing for whether a file exists and removing an existing file are performed by lines 23-26:

if (fs.exists(filenamePath)) {

 // remove the file first

 fs.delete(filenamePath);

 }

Other operations such as copying, moving, and renaming are equally straightforward operations on

Pathobjects performed by the FileSystem.

Finally, we re-open the file for read, and pull the bytes from the file, converting them to a UTF-8

encoded string in the process, and print to the screen:

32 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

 FSDataInputStream in = fs.open(filenamePath);

 String messageIn = in.readUTF();

 System.out.print(messageIn);

 in.close();

The fs.open() method returns an FSDataInputStream, which subclasses java.io.DataInputStream.

Data can be read from the stream using the readUTF() operation, as on line 33. When we are

done with the stream, we call close() to free the handle associated with the file.

Replica Statement

The placement of replicas is critical to HDFS reliability and performance. Optimizing replica

placement distinguishes HDFS from most other distributed file systems. This is a feature that

needs lots of tuning and experience. The purpose of a rack-aware replica placement policy is to

improve data reliability, availability, and network bandwidth utilization. The current

implementation for the replica placement policy is a first effort in this direction. The short-term

goals of implementing this policy are to validate it on production systems, learn more about its

behavior, and build a foundation to test and research more sophisticated policies.

Large HDFS instances run on a cluster of computers that commonly spread across many racks.

Communication between two nodes in different racks has to go through switches. In most cases,

network bandwidth between machines in the same rack is greater than network bandwidth

between machines in different racks.

The NameNode determines the rack id each DataNode belongs to via the process outlined in

Hadoop Rack Awareness. A simple but non-optimal policy is to place replicas on unique racks.

This prevents losing data when an entire rack fails and allows use of bandwidth from multiple

racks when reading data. This policy evenly distributes replicas in the cluster which makes

it easy to balance load on component failure. However, this policy increases the cost of writes

because a write needs to transfer blocks to multiple racks.

For the common case, when the replication factor is three, HDFS’s placement policy is to put

one replica on the local machine if the writer is on a datanode, otherwise on a random datanode,

another replica on a node in a different (remote) rack, and the last on a different node in the same

remote rack. This policy cuts the inter-rack write traffic which generally improves write

performance. The chance of rack failure is far less than that of node failure; this policy does not

impact data reliability and availability guarantees. However, it does reduce the aggregate

network bandwidth used when reading data since a block is placed in only two unique racks

rather than three. With this policy, the replicas of a file do not evenly distribute across the racks.

One third of replicas are on one node, two thirds of replicas are on one rack, and the other third

are evenly distributed across the remaining racks. This policy improves write performance

without compromising data reliability or read performance.

33 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

If the replication factor is greater than 3, the placement of the 4th and following replicas are

determined randomly while keeping the number of replicas per rack below the upper limit (which

is basically (replicas - 1) / racks + 2).

Because the NameNode does not allow DataNodes to have multiple replicas of the same block,

maximum number of replicas created is the total number of DataNodes at that time.

After the support for Storage Types and Storage Policies was added to HDFS, the NameNode

takes the policy into account for replica placement in addition to the rack awareness described

above. The NameNode chooses nodes based on rack awareness at first, then checks that the

candidate node have storage required by the policy associated with the file. If the candidate node

does not have the storage type, the NameNode looks for another node. If enough nodes to place

replicas can not be found in the first path, the NameNode looks for nodes having fallback storage

types in the second path.

Replica Selection

To minimize global bandwidth consumption and read latency, HDFS tries to satisfy a read

request from a replica that is closest to the reader. If there exists a replica on the same rack as the

reader node, then that replica is preferred to satisfy the read request. If HDFS cluster spans

multiple data centers, then a replica that is resident in the local data center is preferred over any

remote replica.

34 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Unit 3

MapReduce is a programming model designed for processing large volumes of data in parallel

by dividing the work into a set of independent tasks. MapReduce programs are written in a

particular style influenced by functional programming constructs, specifically idioms for

processing lists of data. Hadoop MapReduce is a software framework for easily writing

applications which process vast amounts of data (multi-terabyte data-sets) in-parallel on large

clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner.

A MapReduce job usually splits the input data-set into independent chunks which are processed

by the map tasks in a completely parallel manner. The framework sorts the outputs of the maps,

which are then input to the reduce tasks. Typically both the input and the output of the job are

stored in a file- system. The framework takes care of scheduling tasks, monitoring them and re-

executes the failed tasks. Typically the compute nodes and the storage nodes are the same, that

is, the MapReduce framework and the Hadoop Distributed File System are running on the same

set of nodes. This configuration allows the framework to effectively schedule tasks on the nodes

where data is already present, resulting in very high aggregate bandwidth across the cluster.

The MapReduce framework consists of a single master ResourceManager, one slave

NodeManager per cluster-node, and MRAppMaster per application Minimally, applications

specify the input/output locations and supply map and reduce functions via

implementations of appropriate interfaces and/or abstract-classes. These, and other job

parameters, comprise the job configuration.

The Hadoop job client then submits the job (jar/executable etc.) and configuration to the

ResourceManager which then assumes the responsibility of distributing the

software/configuration to the slaves, scheduling tasks and monitoring them, providing status and

diagnostic information to the job- client.

MapReduce Basics

MapReduce programs are designed to compute large volumes of data in a parallel fashion. This

requires dividing the workload across a large number of machines. This model would not scale to large

clusters (hundreds or thousands of nodes) if the components were allowed to share data arbitrarily. The

35 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

communication overhead required to keep the data on the nodes synchronized at all times would prevent

the system from performing reliably or efficiently at large scale.

Instead, all data elements in MapReduce are immutable, meaning that they cannot be updated. If

in a mapping task you change an input (key, value) pair, it does not get reflected back in the input files;

communication occurs only by generating new output (key, value) pairs which are then forwarded by

the Hadoop system into the next phase of execution.

MapReduce programs are designed to compute large volumes of data in a parallel

fashion. This requires dividing the workload across a large number of machines. This model

would not scale to large clusters (hundreds or thousands of nodes) if the components were

allowed to share data arbitrarily. The communication overhead required to keep the data on the

nodes synchronized at all times would prevent the system from performing reliably or efficiently

at large scale.

Instead, all data elements in MapReduce are immutable, meaning that they cannot be

updated. If in a mapping task you change an input (key, value) pair, it does not get reflected back

in the input files; communication occurs only by generating new output (key, value) pairs which

are then forwarded by the Hadoop system into the next phase of execution.

LIST PROCESSING

Conceptually, MapReduce programs transform lists of input data elements into lists of

output data elements. A MapReduce program will do this twice, using two different list

processing idioms: map, and reduce. These terms are taken from several list processing

languages such as LISP, Scheme, or ML.

Inputs and Outputs

The MapReduce framework operates exclusively on <key, value> pairs, that is, the framework

views the input to the job as a set of <key, value> pairs and produces a set of <key, value> pairs as the

output of the job, conceivably of different types.

The key and value classes have to be serializable by the framework and hence need to

implement the Writable interface. Additionally, the key classes have to implement the

WritableComparable interface to facilitate sorting by the framework.

36 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Input and Output types of a MapReduce job:

(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2> -> reduce ->

<k3, v3> (output)

Word count program using Map Reduce is as follows:

import java.io.IOException; import

java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration; import

org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable; import

org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job; import

org.apache.hadoop.mapreduce.Mapper; import

org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import

org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1); private Text

word = new Text();

public void map(Object key, Text value, Context context

37 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString()); while

(itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> { private

IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context

) throws IOException, InterruptedException { int sum =

0;

for (IntWritable val : values) { sum +=

val.get();

}

result.set(sum);

context.write(key, result);

}

}

38 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

public static void main(String[] args) throws Exception { Configuration

conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

}

Applications typically implement the Mapper and Reducer interfaces to provide the map and reduce

methods. These form the core of the job. Mapper maps input key/value pairs to a set of intermediate key/value

pairs. Maps are the individual tasks that transform input records into intermediate records. The transformed

intermediate records do not need to be of the same type as the input records. A given input pair may map to zero

or many output pairs. The Hadoop MapReduce framework spawns one map task for each InputSplit generated

by the InputFormat for the job. Overall, mapper implementations are passed to the job via Job.setMapperClass

(Class) method. The framework then calls map(WritableComparable, Writable, Context) for each key/value pair

in the InputSplit for that task. Applications can then override

39 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

the cleanup(Context) method to perform any required cleanup.

Output pairs do not need to be of the same types as input pairs. A given input pair may map to zero or

many output pairs. Output pairs are collected with calls to context.write(WritableComparable,

Writable).Applications can use the Counter to report its statistics. All intermediate values associated with a

given output key are subsequently grouped by the framework, and passed to the Reducer(s) to determine the

final output. Users can control the grouping by specifying a Comparator Comparator via

Job.setGroupingComparatorClass (Class). The Mapper outputs are sorted and then partitioned per Reducer.

The total number of partitions is the same as the number of reduce tasks for the job. Users can control which

keys (and hence records) go to which Reducer by implementing a custom Partitioner. Users can optionally

specify a combiner, via Job.setCombinerClass(Class), to perform local aggregation of the intermediate outputs,

which helps to cut down the amount of data transferred from the Mapper to the Reducer. The

intermediate, sorted outputs are always stored in a simple (key-len, key, value-len, value) format. Applications

can control if, and how, the intermediate outputs are to be compressed and the

CompressionCodec to be used via the Configuration.

Reducer reduces a set of intermediate values which share a key to a smaller set of values.

The number of reduces for the job is set by the user via Job.setNumReduceTasks (int).

Overall, Reducer implementations are passed the Job for the job via

the Job.setReducerClass(Class) method and can override it to initialize themselves. The framework then calls reduce

(WritableComparable, Iterable<Writable>,

Context) method for each <key, (list of values)> pair in the grouped inputs. Applications can then override the

cleanup(Context) method to perform any required cleanup.

Reducer has 3 primary phases: shuffle, sort and reduce. Input to the Reducer is the sorted output of the

mappers. In this phase the framework fetches the relevant partition of the output of all the mappers, via HTTP.

If equivalence rules for grouping the intermediate keys are required to be different from those for

grouping keys before reduction, then one may specify a Comparator via

Job.setSortComparatorClass (Class).

Since Job.setGroupingComparatorClass (Class) can be used to control how intermediate keys are

grouped, these can be used in conjunction to simulate secondary sort on values.

In this phase the reduce(WritableComparable, Iterable<Writable>, Context) method is called for

40 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

each <key, (list of values)> pair in the grouped inputs. The output of the reduce task is

typically written to the FileSystem via Context.write(WritableComparable,

Writable).Applications can use the Counter to report its statistics.The output of the Reducer is not

sorted.

The right number of reduces seems to be 0.95 or 1.75 multiplied by (<no. of nodes> * <no. of maximum

containers per node>).With 0.95 all of the reduces can launch immediately and start transferring map outputs as

the maps finish. With 1.75 the faster nodes will finish their first round of reduces and launch a second wave of

reduces doing a much better job of load balancing.Increasing the number of reduces increases the framework

overhead, but increases load balancing and lowers the cost of failures.

The scaling factors above are slightly less than whole numbers to reserve a few reduce slots in the

framework for speculative-tasks and failed tasks.

It is legal to set the number of reduce-tasks to zero if no reduction is desired. In this case the outputs of

the map-tasks go directly to the FileSystem, into the output path set by FileOutputFormat.setOutputPath (Job,

Path). The framework does not sort the map-outputs before writing them out to the FileSystem.

Partitioner partitions the key space. Partitioner controls the partitioning of the keys of the intermediate

map-outputs. The key (or a subset of the key) is used to derive the partition, typically by a hash function. The total

number of partitions is the same as the number of reduce tasks for the job. Hence this controls which of the m

reduce tasks the intermediate key (and hence the record) is sent to for reduction. HashPartitioner is the default

Partitioner. Counter is a facility for MapReduce applications to report its statistics.

Mapper and Reducer implementations can use the Counter to report statistics. Hadoop MapReduce

comes bundled with a library of generally useful mappers, reducers, and partitioners. Job represents a

MapReduce job configuration.Job is the primary interface for a user to describe a MapReduce job to the Hadoop

framework for execution. The framework tries to faithfully execute the job as described by Job, however:

Some configuration parameters may have been marked as final by administrators and hence cannot be

altered. While some job parameters are straight-forward to set (e.g. Job.setNumReduceTasks (int)) ,

other parameters interact subtly with the rest of the framework and/or job configuration and are more complex

to set (e.g. Configuration. Set(JobContext.NUM_MAPS, int)).

41 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Optionally, Job is used to specify other advanced facets of the job such as the Comparator to be

used, files to be put in the DistributedCache, whether intermediate and/or job outputs are to be

compressed (and how), whether job tasks can be executed in a speculative manner Of course,

users can use Configuration.set(String, String)/ Configuration.get(String) to set/get arbitrary

parameters needed by applications. However, use the DistributedCache for large

amounts of (read-only) data.

The MRAppMaster executes the Mapper/Reducer task as a child process in a separate jvm.

The child-task inherits the environment of the parent MRAppMaster. The user can specify additional

 options to the child-jvm via the mapreduce.{map|reduce}.java.opts and configuration

parameter in the Job such as non-standard paths for the run-time linker to search shared libraries via -

Djava.library.path=<> etc. If the mapreduce.{map|reduce}.java.opts parameters contains the symbol

@taskid@ it is interpolated with value of taskid of the MapReduce task.

Here is an example with multiple arguments and substitutions, showing jvm GC logging, and

start of a passwordless JVM JMX agent so that it can connect with jconsole and the likes to watch child

memory, threads and get thread dumps. It also sets the maximum heap-size of the map and reduce child

jvm to 512MB & 1024MB respectively. It also adds an additional path to the java.library.path of the

child-jvm.

<property>
<name>mapreduce.map.java.opts</name>
<value>
-Xmx512M -Djava.library.path=/home/mycompany/lib -verbose:gc -

Xloggc:/tmp/@taskid@.gc

-Dcom.sun.management.jmxremote.authenticate=false -

Dcom.sun.management.jmxremote.ssl=false
</value>

</property>

<property>
<name>mapreduce.reduce.java.opts</name>
<value>
-Xmx1024M -Djava.library.path=/home/mycompany/lib -verbose:gc -

Xloggc:/tmp/@taskid@.gc

-Dcom.sun.management.jmxremote.authenticate=false -

Dcom.sun.management.jmxremote.ssl=false
</value>

</property>

mailto:/tmp/@taskid@.gc
mailto:/tmp/@taskid@.gc

42 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Users/admins can also specify the maximum virtual memory of the launched child-task, and any

sub-process it launches recursively, using mapreduce memory.mb. Note that the value set here is

a per process limit. The value for mapreduce.{map|reduce}. memory.mb should be specified in

mega bytes (MB). And also the value must be greater than or equal to the -Xmx passed to

JavaVM, else the VM might not start.

Note: mapreduce.{map|reduce}.java.opts are used only for configuring the launched child tasks

from MRAppMaster. The memory available to some parts of the framework is also

configurable. In map and reduce tasks, performance may be influenced by adjusting parameters

influencing the concurrency of operations and the frequency with which data will hit disk.

Monitoring the filesystem counters for a job- particularly relative to byte counts from the map

and into the reduce- is invaluable to the tuning of these parameters.

A record emitted from a map will be serialized into a buffer and metadata will be stored into

accounting buffers. As described in the following options, when either the serialization buffer or

the metadata exceed a threshold, the contents of the buffers will be sorted and written to disk in

the background while the map continues to output records. If either buffer fills completely while

the spill is in progress, the map thread will block. When the map is finished, any remaining

records are written to disk and all on-disk segments are merged into a single file. Minimizing the

number of spills to disk can decrease map time, but a larger buffer also decreases the memory

available to the mapper.

43 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Unit 4

Anatomy of a MapReduce Job

In MapReduce, a YARN application is called a Job. The implementation of the Application

Master provided by the MapReduce framework is called MRAppMaster.

Timeline of a MapReduce Job

This is the timeline of a MapReduce Job execution:

Map Phase: several Map Tasks are executed

Reduce Phase: several Reduce Tasks are executed

Notice that the Reduce Phase may start before the end of Map Phase. Hence, an interleaving

between them is possible.

Map Phase

We now focus our discussion on the Map Phase. A key decision is how many MapTasks the

Application Master needs to start for the current job.

What does the user give us?

Let’s take a step back. When a client submits an application, several kinds of

information are provided to the YARN infrastucture. In particular:

a configuration: this may be partial (some parameters are not specified by the user) and

in this case the default values are used for

44 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

num_splits = 0

for each input file f:

remaining = f.length

while remaining / split_size > split_slope:

num_splits += 1

remaining -= split_size

split_slope = 1.1

split_size =~ dfs.blocksize

the job. Notice that these default values may be the ones chosen by a Hadoop provider

like Amanzon.

a JAR containing:

o a map() implementation

o a combiner implementation

o a reduce() implementation input
and output information:

o input directory: is the input directory on HDFS? On S3? How many files?

o output directory: where will we store the output? On HDFS? On S3?

The number of files inside the input directory is used for deciding the number of Map

Tasks of a job.

How many Map Tasks?

The Application Master will launch one MapTask for each map split. Typically, there is a map split

for each input file. If the input file is too big (bigger than the HDFS block size) then we have two or

more map splits associated to the same input file. This is the pseudocode used inside the method

getSplits() of the FileInputFormat class:

where:

Notice that the configuration parameter mapreduce.job.maps is ignored in

MRv2 (in the past it was just an hint).

45 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

MapTask Launch

The MapReduce Application Master asks to the Resource Manager for Containers needed by the

Job: one MapTask container request for each MapTask (map split).

A container request for a MapTask tries to exploit data locality of the map split. The Application

Master asks for:

a container located on the same Node Manager where the map split is stored (a map split

may be stored on multiple nodes due to the HDFS replication factor);

otherwise, a container located on a Node Manager in the same rack where the the

map split is stored;

otherwise, a container on any other Node Manager of the cluster

This is just an hint to the Resource Scheduler. The Resource Scheduler is free to ignore data

locality if the suggested assignment is in conflict with the Resouce Scheduler’s goal.

When a Container is assigned to the Application Master, the MapTask is launched.

Map Phase: example of an execution scenario

This is a possible execution scenario of the Map Phase:

there are two Node Managers: each Node Manager has 2GB of RAM (NM capacity) and

each MapTask requires 1GB, we can run in parallel

46 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

2 containers on each Node Manager (this is the best scenario, the Resource

Scheduler may decide differently)

there are no other YARN applications running in the cluster

our job has 8 map splits (e.g., there are 7 files inside the input directory, but only one of

them is bigger than the HDFS block size so we split it into 2 map splits): we need to run 8

Map Tasks.

Map Task Execution Timeline

Fig. Map Task execution timeline:

INIT phase: we setup the Map Task

EXECUTION phase: for each (key, value) tuple inside the map split we run

the map() function

SPILLING phase: the map output is stored in an in-memory buffer; when this buffer

is almostfull then we start (in parallel) the spilling phase in order to remove data from it

SHUFFLE phase: at the end of the spilling phase, we merge all the map outputs and

package them for the reduce phase

MapTask: INIT

During the INIT phase, we:

1. create a context (TaskAttemptContext.class)

2. create an instance of the user Mapper.class

3. setup the input

(e.g., InputFormat.class, InputSplit.class, RecordReader.class)

4. setup the output (NewOutputCollector.class)

5. create a mapper context (MapContext.class, Mapper.Context.class)

47 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

6. initialize the input, e.g.:

7. create a SplitLineReader.class object

8. create a HdfsDataInputStream.class object

MapTask: EXECUTION

The EXECUTION phase is performed by the run method of the Mapper class. The user can

override it, but by default it will start by calling the setup method: this function by

default does not do anything useful but can be override by the user in order to setup the Task

(e.g., initialize class variables). After the setup, for each <key, value> tuple contained in

the map split, the map() is invoked. Therefore, map() receives: a key a value, and a mapper

context. Using the context, a mapstores its output to a buffer.

Notice that the map split is fetched chuck by chunk (e.g., 64KB) and each chunk is split

in several (key, value) tuples (e.g., using SplitLineReader.class).

This is done inside the Mapper.Context.nextKeyValue method. When the map split has

been completely processed, the run function calls the clean method: by default, no action

is performed but the user may decide to override it.

48 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

MapTask: SPILLING

As seen in the EXECUTING phase, the map will write (using

Mapper.Context.write()) its output into a circular in-memory buffer

(MapTask.MapOutputBuffer). The size of this buffer is fixed and determined by the

configuration parameter mapreduce.task.io.sort.mb (default: 100MB).

Whenever this circular buffer is almost full (mapreduce.map. sort.spill.percent: 80% by default),

the SPILLING phase is performed (in parallel using a separate thread). Notice that if the splilling

thread is too slow and the buffer is 100% full, then the map() cannot be executed and thus it has

to wait.

The SPILLING thread performs the following actions:

1. it creates a SpillRecord and FSOutputStream (local filesystem)

2. in-memory sorts the used chunk of the buffer: the output tuples are sorted by

(partitionIdx, key) using a quicksort algorithm.

3. the sorted output is split into partitions: one partition for each ReduceTask of

the job (see later).

4. Partitions are sequentially written into the local file.

49 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

How Many Reduce Tasks?

The number of ReduceTasks for the job is decided by the configuration parameter

mapreduce.job.reduces.

What is the partitionIdx associated to an output tuple?

The paritionIdx of an output tuple is the index of a partition. It is decided inside the

Mapper.Context.write():

partitionIdx = (key.hashCode() & Integer.MAX_VALUE) % numReducers

It is stored as metadata in the circular buffer alongside the output tuple. The user can customize

the partitioner by setting the configuration parameter mapreduce.job.partitioner.class.

When do we apply the combiner?

If the user specifies a combiner then the SPILLING thread, before writing the tuples to the file

(4), executes the combiner on the tuples contained in each partition. Basically, we:

1. create an instance of the user Reducer.class (the one specified for the combiner!)

2. create a Reducer.Context: the output will be stored on the local filesystem

3. execute Reduce.run(): see Reduce Task description

The combiner typically use the same implementation of the

standard reduce() function and thus can be seen as a local reducer.

MapTask: end of EXECUTION

At the end of the EXECUTION phase, the SPILLING thread is triggered for the last time. In

more detail, we:

1. sort and spill the remaining unspilled tuples

50 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

MapReduce Performance Tuning Tutorial

Performance tuning in Hadoop will help in optimizing the Hadoop cluster performance. This

tutorial on Hadoop MapReduce performance tuning will provide you ways for improving your

Hadoop cluster performance and get the best result from your programming in Hadoop. It will

cover 7 important concepts like Memory Tuning in Hadoop, Map Disk spill in Hadoop, tuning

mapper tasks, Speculative execution in Big data hadoop and many other related concepts for

Hadoop MapReduce performance tuning.

Tuning Hadoop Run-time Parameters

There are many options provided by Hadoop on CPU, memory, disk, and network for

performance tuning. Most Hadoop tasks are not CPU bounded, what is most considered is

to optimize usage of memory and disk spills. Let us get into the details in this Hadoop

performance tuning in Tuning Hadoop Run-time parameters.

2. start the SHUFFLE phase

Notice that for each time the buffer was almost full, we get one spill file (SpillReciord + output

file). Each Spill file contains several partitions (segments).

Hadoop MapReduce Performance Tuning

Hadoop performance tuning will help you in optimizing your Hadoop cluster performance and make it

better to provide best results while doing Hadoop programming in Big Data companies. To perform the

same, you need to repeat the process given below till desired output is achieved at optimal way.

The first step in hadoop performance tuning is to run Hadoop job, Identify the bottlenecks and address

them using below methods to get the highest performance. You need to repeat above step till a level of

performance is achieved.

51 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Disk IO is usually the performance bottleneck in Hadoop. There are a lot of
parameters you can tune for minimizing spilling like:

But do you think frequent spilling is a good idea?

It’s highly suggested not to spill more than once as if you spill once, you need
to re-read and re-write all data: 3x the IO.

Tuning Mapper Tasks

The number of mapper tasks is set implicitly unlike reducer tasks. The most

common hadoop performance tuning way for the mapper is controlling the

amount of mapper and the size of each job. When dealing with large files,

Hadoop split the file into smaller chunks so that mapper can run it in parallel.

However, initializing new mapper job usually takes few seconds that is also an

overhead to be minimized. Below are the suggestions for the same:

 Reuse jvm task

 Aim for map tasks running 1-3 minutes each. For this if the average

mapper running time is lesser than one minute, increase

the mapred.min.split.size, to allocate less mappers in slot and thus reduce

the mapper initializing overhead.

Minimize the Map Disk Spill

 Compression of mapper output

 Usage of 70% of heap memory ion mapper for spill buffer

Memory Tuning

The most general and common rule for memory tuning in MapReduce performance tuning is: use as

much memory as you can without triggering swapping. The parameter for task memory is

mapred.child.java.opts that can be put in your configuration file.

You can also monitor memory usage on the server using

Ganglia, Cloudera manager, or Nagios for better memory performance.

52 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Tuning Application Specific Performance

Let’s now discuss the tips to improve the Application specific performance in
Hadoop.

Minimize your Mapper Output

Minimizing the mapper output can improve the general performance a lot as this

is sensitive to disk IO, network IO, and memory sensitivity on shuffle phase.

For achieving this, below are the suggestions:

 Filter the records on mapper side instead of reducer side.

 Use minimal data to form your map output key and map output value in

Map Reduce.

 Compress mapper output

Balancing Reducer’s Loading

Unbalanced reducer tasks create another performance issue. Some reducers

take most of the output from mapper and ran extremely long compare to other
reducers.

Below are the methods to do the same:

 Implement a better hash function in Partitioner class.

 Write a preprocess job to separate keys using MultipleOutputs. Then use

another map-reduce job to process the special keys that cause the problem.

 Use Combine file input format for bunch of smaller files.

When tasks take long time to finish the execution, it affects the MapReduce jobs. This problem is being

solved by the approach of speculative execution by backing up slow tasks on alternate machines. You

need to set the configuration parameters ‘mapreduce.map.tasks.speculative.execution’ and

‘mapreduce.reduce.tasks.speculative.execution’ to true for enabling speculative execution. This will

reduce the job execution time if the task progress is slow due to memory unavailability.

53 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Unit-5

Apache Mahout is an open source project that is primarily used in producing scalable machine

learning algorithms. We are living in a day and age where information is available in

abundance. The information overload has scaled to such heights that sometimes it becomes

difficult to manage our little mailboxes! Imagine the volume of data and records some of the

popular websites (the likes of Facebook, Twitter, and Youtube) have to collect and manage on a

daily basis. It is not uncommon even for lesser known websites to receive huge amounts of

information in bulk.

Normally we fall back on data mining algorithms to analyze bulk data to identify trends and

draw conclusions. However, no data mining algorithm can be efficient enough to process very

large datasets and provide outcomes in quick time, unless the computational tasks are run on

multiple machines distributed over the cloud.

We now have new frameworks that allow us to break down a computation task into multiple

segments and run each segment on a different machine. Mahout is such a data mining

framework that normally runs coupled with the Hadoop infrastructure at its background to

manage huge volumes of data.

What is Apache Mahout?

A mahout is one who drives an elephant as its master. The name comes from its close

association with Apache Hadoop which uses an elephant as its logo.

Hadoop is an open-source framework from Apache that allows to store and process big data in a

distributed environment across clusters of computers using simple programming models.

Apache Mahout is an open source project that is primarily used for creating scalable machine

learning algorithms. It implements popular machine learning techniques such as:

 Recommendation

 Classification

 Clustering

Apache Mahout started as a sub-project of Apache’s Lucene in 2008. In

2010, Mahout became a top level project of Apache.

Features of Mahout

The primitive features of Apache Mahout are listed below.

 The algorithms of Mahout are written on top of Hadoop, so it works well in distributed

environment. Mahout uses the Apache Hadoop library to scale effectively in the

54 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

cloud.

 Mahout offers the coder a ready-to-use framework for doing data mining tasks on

large volumes of data.

 Mahout lets applications to analyze large sets of data effectively and in quick time.

 Includes several MapReduce enabled clustering implementations such as k-means,

fuzzy k-means, Canopy, Dirichlet, and Mean-Shift.

 Supports Distributed Naive Bayes and Complementary Naive Bayes classification

implementations.

 Comes with distributed fitness function capabilities for evolutionary programming.

 Includes matrix and vector libraries.

Applications of Mahout

 Companies such as Adobe, Facebook, LinkedIn, Foursquare, Twitter, and Yahoo use

Mahout internally.

 Foursquare helps you in finding out places, food, and entertainment available in a

particular area. It uses the recommender engine of Mahout.

 Twitter uses Mahout for user interest modelling.

 Yahoo! uses Mahout for pattern mining.

Apache Mahout is a highly scalable machine learning library that enables developers to use

optimized algorithms. Mahout implements popular machine learning techniques such as

recommendation, classification, and clustering. Therefore, it is prudent to have a brief section

on machine learning before we move further.

What is Machine Learning?

Machine learning is a branch of science that deals with programming the systems in such a way

that they automatically learn and improve with experience. Here, learning means recognizing

and understanding the input data and making wise decisions based on the supplied data.

It is very difficult to cater to all the decisions based on all possible inputs. To tackle this

problem, algorithms are developed. These algorithms build knowledge from specific data and

past experience with the principles of statistics, probability theory, logic, combinatorial

optimization, search, reinforcement learning, and control theory.

The developed algorithms form the basis of various applications such as:

 Vision processing

55 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

 Language processing

 Forecasting (e.g., stock market trends)

 Pattern recognition

 Games

 Data mining

 Expert systems

 Robotics

Machine learning is a vast area and it is quite beyond the scope of this tutorial to cover all its

features. There are several ways to implement machine learning techniques, however the most

commonly used ones are supervised and unsupervised learning.

Supervised Learning

Supervised learning deals with learning a function from available training data. A supervised

learning algorithm analyzes the training data and produces an inferred function, which can be

used for mapping new examples. Common examples of supervised learning include:

 classifying e-mails as spam,

 labeling webpages based on their content, and

 voice recognition.

There are many supervised learning algorithms such as neural networks, Support Vector

Machines (SVMs), and Naive Bayes classifiers. Mahout implements Naive Bayes classifier.

Unsupervised Learning

Unsupervised learning makes sense of unlabeled data without having any predefined dataset for

its training. Unsupervised learning is an extremely powerful tool for analyzing available data

and look for patterns and trends. It is most commonly used for clustering similar input into

logical groups. Common approaches to unsupervised learning include:

 k-means

 self-organizing maps, and

 hierarchical clustering

Recommendation

Recommendation is a popular technique that provides close recommendations based on user

information such as previous purchases, clicks, and ratings.

56 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

 Amazon uses this technique to display a list of recommended items that you might be

interested in, drawing information from your past actions. There are recommender

engines that work behind Amazon to capture user behavior and recommend selected

items based on your earlier actions.

 Facebook uses the recommender technique to identify and recommend the

“people you may know list”.

Classification

Classification, also known as categorization, is a machine learning technique that uses known

data to determine how the new data should be classified into a set of existing categories.

Classification is a form of supervised learning.

 Mail service providers such as Yahoo! and Gmail use this technique to decide whether a

new mail should be classified as a spam. The categorization algorithm trains itself by

analyzing user habits of marking certain mails as spams. Based on that, the classifier

decides whether a future mail should be deposited in your inbox or in the spams folder.

 iTunes application uses classification to prepare playlists.

Clustering

Clustering is used to form groups or clusters of similar data based on common characteristics.

Clustering is a form of unsupervised learning.

 Search engines such as Google and Yahoo! use clustering techniques to group data

with similar characteristics.

 Newsgroups use clustering techniques to group various articles based on related topics.

57 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

$ su

password:

useradd hadoop
passwd hadoop
New passwd:
Retype new passwd

The clustering engine goes through the input data completely and based on the characteristics of

the data, it will decide under which cluster it should be grouped.

Java and Hadoop are the prerequisites of mahout. Below given are the steps to download

and install Java, Hadoop, and Mahout.

Pre-Installation Setup

Before installing Hadoop into Linux environment, we need to set up Linux using ssh (Secure

Shell). Follow the steps mentioned below for setting up the Linux environment.

Creating a User

It is recommended to create a separate user for Hadoop to isolate the Hadoop file system from

the Unix file system. Follow the steps given below to create a user:

 Open root using the command “su”.

 Create a user from the root account using the command “useradd username”.

 Now you can open an existing user account using the command “su

username”.

 Open the Linux terminal and type the following commands to create a user.

SSH Setup and Key Generation

SSH setup is required to perform different operations on a cluster such as starting, stopping, and

distributed daemon shell operations. To authenticate different users of Hadoop, it is required to

provide public/private key pair for a Hadoop user and share it with different users.

The following commands are used to generate a key value pair using SSH, copy the public keys

form id_rsa.pub to authorized_keys, and provide owner, read and write permissions to

authorized_keys file respectively.

58 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

ssh localhost

$ java -version

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)
Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

$ cd Downloads/
$ ls

jdk-7u71-linux-x64.gz

$ tar zxf jdk-7u71-linux-x64.gz
$ ls

jdk1.7.0_71 jdk-7u71-linux-x64.gz

Verifying ssh

Installing Java

Java is the main prerequisite for Hadoop and HBase. First of all, you should verify the existence

of Java in your system using “java -version”. The syntax of Java version command is given

below.

It should produce the following output.

If you don’t have Java installed in your system, then follow the steps given below for installing

Java.

Step 1

Download java (JDK <latest version> - X64.tar.gz) by visiting the following link: Oracle

Then jdk-7u71-linux-x64.tar.gz is downloaded onto your system.

Step 2

Generally, you find the downloaded Java file in the Downloads folder. Verify it and extract the

jdk-7u71-linux-x64.gz file using the following commands.

$ ssh-keygen -t rsa
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

$ chmod 0600 ~/.ssh/authorized_keys

59 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

$ su

password:
mv jdk1.7.0_71 /usr/local/

exit

export JAVA_HOME=/usr/local/jdk1.7.0_71

export PATH= $PATH:$JAVA_HOME/bin

hadoop version

Hadoop 2.6.0

Compiled by jenkins on 2014-11-13T21:10Z

Compiled with protoc 2.5.0
From source with checksum 18e43357c8f927c0695f1e9522859d6a

This command was run using /home/hadoop/hadoop/share/hadoop/common/hadoopcommon-2.6.0.jar

$ su

password:
cd /usr/local

wget http://mirrors.advancedhosters.com/apache/hadoop/common/hadoop-

2.6.0/hadoop-2.6.0-src.tar.gz

tar xzf hadoop-2.6.0-src.tar.gz

mv hadoop-2.6.0/* hadoop/
exit

Step 3

To make Java available to all the users, you need to move it to the location

“/usr/local/”. Open root, and type the following commands.

Step 4

For setting up PATH and JAVA_HOME variables, add the following

commands to ~/.bashrc file.

Now, verify the java -version command from terminal as explained above.

Downloading Hadoop

After installing Java, you need to install Hadoop initially. Verify the

existence of Hadoop using “Hadoop version” command as shown below.

It should produce the following output:

If your system is unable to locate Hadoop, then download Hadoop and have it installed on your

system. Follow the commands given below to do so.

Download and extract hadoop-2.6.0 from apache software foundation using the following

commands.

Installing Hadoop

http://mirrors.advancedhosters.com/apache/hadoop/common/hadoop-

60 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

export HADOOP_HOME=/usr/local/hadoop

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin
export HADOOP_INSTALL=$HADOOP_HOME

$ source ~/.bashrc

$ cd $HADOOP_HOME/etc/hadoop

Install Hadoop in any of the required modes. Here, we are demonstrating HBase functionalities

in pseudo-distributed mode, therefore install Hadoop in pseudo-distributed mode.

Follow the steps given below to install Hadoop 2.4.1 on your system.

Step 1: Setting up Hadoop

You can set Hadoop environment variables by appending the following commands to

~/.bashrc file.

Now, apply all changes into the currently running system.

Step 2: Hadoop Configuration

You can find all the Hadoop configuration files at the location

“$HADOOP_HOME/etc/hadoop”. It is required to make changes in those configuration files

according to your Hadoop infrastructure.

In order to develop Hadoop programs in Java, you need to reset the Java environment

 variables in hadoop-env.sh file by

replacing JAVA_HOME value with the location of Java in your system.

Given below are the list of files which you have to edit to configure Hadoop.

core-site.xml

The core-site.xml file contains information such as the port number used for Hadoop instance,

memory allocated for file system, memory limit for storing data, and the size of Read/Write

buffers.

export JAVA_HOME=/usr/local/jdk1.7.0_71

61 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:9000</value>

</property>

</configuration>

dfs.replication (data replication value) = 1

(In the below given path /hadoop/ is the user name.

hadoopinfra/hdfs/namenode is the directory created by hdfs file system.)

namenode path = //home/hadoop/hadoopinfra/hdfs/namenode

(hadoopinfra/hdfs/datanode is the directory created by hdfs file system.)

datanode path = //home/hadoop/hadoopinfra/hdfs/datanode

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.name.dir</name>

Open core-site.xml and add the following property in between the

<configuration>, </configuration> tags:

hdfs-site.xm

The hdfs-site.xml file contains information such as the value of replication data, namenode

path, and datanode paths of your local file systems. It means the place where you want to store

the Hadoop infrastructure.

Let us assume the following data:

Open this file and add the following properties in between the

<configuration>, </configuration> tags in this file.

62 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

<configuration>

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

</configuration>

$ cp mapred-site.xml.template mapred-site.xml

Note: In the above file, all the property values are user defined. You can make changes

according to your Hadoop infrastructure.

mapred-site.xml

This file is used to configure yarn into Hadoop. Open mapred-site.xml file and add the

 following property in between the <configuration>,

</configuration> tags in this file.

mapred-site.xml

This file is used to specify which MapReduce framework we are using. By default, Hadoop

contains a template of mapred-site.xml. First of all, it is required to copy the file from mapred-

site.xml.template to mapred- site.xml file using the following command.

<value>file:///home/hadoop/hadoopinfra/hdfs/namenode</value>

</property>

<property>

<name>dfs.data.dir</name>

<value>file:///home/hadoop/hadoopinfra/hdfs/datanode</value>

</property>

</configuration>

63 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

<configuration>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

</configuration>

$ cd ~

$ hdfs namenode -format

10/24/14 21:30:55 INFO namenode.NameNode: STARTUP_MSG:

/**

STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = localhost/192.168.1.11

STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.4.1
...

...
10/24/14 21:30:56 INFO common.Storage: Storage directory

/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted.

10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to retain
1 images with txid >= 0

10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0

10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG:

/**

SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11
**/

$ start-dfs.sh

Open mapred-site.xml file and add the following properties in between the

<configuration>, </configuration> tags in this file.

Verifying Hadoop Installation

The following steps are used to verify the Hadoop installation.

Step 1: Name Node Setup

Set up the namenode using the command “hdfs namenode -format” as

follows:

The expected result is as follows:

Step 2: Verifying Hadoop dfs

The following command is used to start dfs. This command starts your Hadoop file system.

64 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

10/24/14 21:37:56
Starting namenodes on [localhost]

localhost: starting namenode, logging to /home/hadoop/hadoop-
2.4.1/logs/hadoop-hadoop-namenode-localhost.out
localhost: starting datanode, logging to /home/hadoop/hadoop-

2.4.1/logs/hadoop-hadoop-datanode-localhost.out

Starting secondary namenodes [0.0.0.0]

$ start-yarn.sh

starting yarn daemons

starting resource manager, logging to /home/hadoop/hadoop-2.4.1/logs/yarn-
hadoop-resourcemanager-localhost.out
localhost: starting node manager, logging to /home/hadoop/hadoop-
2.4.1/logs/yarn-hadoop-nodemanager-localhost.out

http://localhost:50070/

The expected output is as follows:

Step 3: Verifying Yarn Script

The following command is used to start yarn script. Executing this

command will start your yarn demons.

The expected output is as follows:

Step 4: Accessing Hadoop on Browser

The default port number to access hadoop is 50070. Use the following URL to get Hadoop

services on your browser.

65 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

http://localhost:8088/

Step 5: Verify All Applications for Cluster

The default port number to access all application of cluster is 8088. Use the following URL to

visit this service.

Downloading Mahout

Mahout is available in the website Mahout. Download Mahout from the link provided in the

website. Here is the screenshot of the website.

Step 1

66 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

[Hadoop@localhost ~]$ wget
http://mirror.nexcess.net/apache/mahout/0.9/mahout-distribution-0.9.tar.gz

[Hadoop@localhost ~]$ tar zxvf mahout-distribution-0.9.tar.gz

<dependency>

<groupId>org.apache.mahout</groupId>

<artifactId>mahout-core</artifactId>

<version>0.9</version>

</dependency>

<dependency>

<groupId>org.apache.mahout</groupId>

<artifactId>mahout-math</artifactId>

<version>${mahout.version}</version>

</dependency>

<dependency>

<groupId>org.apache.mahout</groupId>

<artifactId>mahout-integration</artifactId>

<version>${mahout.version}</version>

Download Apache mahout from the

link http://mirror.nexcess.net/apache/mahout/ using the following command.

Then mahout-distribution-0.9.tar.gz will be downloaded in your system.

Step2

Browse through the folder where mahout-distribution-0.9.tar.gz is stored and extract the

downloaded jar file as shown below.

Maven Repository

Given below is the pom.xml to build Apache Mahout using Eclipse.

http://mirror.nexcess.net/apache/mahout/0.9/mahout-distribution-0.9.tar.gz
http://mirror.nexcess.net/apache/mahout/

67 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Mahout Recommender Engine

Mahout has a non-distributed, non-Hadoop-based recommender engine. You should pass a

text document having user preferences for items. And the output of this engine would be the

estimated preferences of a particular user for other items.

Example

Consider a website that sells consumer goods such as mobiles, gadgets, and their

accessories. If we want to implement the features of Mahout in such a site, then we can build a

recommender engine. This engine analyzes past purchase data of the users and recommends

new products based on that.

The components provided by Mahout to build a recommender engine are as follows:

 DataModel

 UserSimilarity

 ItemSimilarity

 UserNeighborhood

 Recommender

From the data store, the data model is prepared and is passed as an input to the recommender

engine. The Recommender engine generates the recommendations for a particular user. Given

below is the architecture of recommender engine.

Architecture of Recommender Engine

</dependency>

68 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

1,00,1.0
1,01,2.0

1,02,5.0

1,03,5.0

1,04,5.0

2,00,1.0
2,01,2.0

2,05,5.0
2,06,4.5
2,02,5.0

3,01,2.5
3,02,5.0

3,03,4.0

3,04,3.0

4,00,5.0

4,01,5.0

Building a Recommender usingMahout

Here are the steps to develop a simple recommender:

Step1: Create DataModel Object

The constructor of PearsonCorrelationSimilarity class requires a data model object, which

holds a file that contains the Users, Items, and Preferences details of a product. Here is the

sample data model file:

69 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

DataModel datamodel = new FileDataModel(new File("input file"));

UserSimilarity similarity = new PearsonCorrelationSimilarity(datamodel);

UserNeighborhood neighborhood = new ThresholdUserNeighborhood(3.0, similarity, model);

UserBasedRecommender recommender = new GenericUserBasedRecommender(model, neighborhood,
similarity);

The DataModel object requires the file object, which contains the path of the input file. Create

the DataModel object as shown below.

Step2: Create UserSimilarity Object

Create UserSimilarity object using PearsonCorrelationSimilarity class as shown

below:

Step3: Create UserNeighborhood object

This object computes a "neighborhood" of users like a given user. There are two types of

neighborhoods:

 NearestNUserNeighborhood - This class computes a neighborhood consisting of the

nearest n users to a given user. "Nearest" is defined by the given UserSimilarity.

 ThresholdUserNeighborhood - This class computes a neighborhood consisting of all the

users whose similarity to the given user meets or exceeds a certain threshold. Similarity

is defined by the given UserSimilarity.

Here we are using ThresholdUserNeighborhood and set the limit of preference to 3.0.

Step4: Create Recommender Object

Create UserbasedRecomender object. Pass all the above created objects to its constructor as

shown below.

Step5: Recommend Items to a User

Recommend products to a user using the recommend() method of Recommender

interface. This method requires two parameters. The first represents the user id of the user to

whom we need to send the recommendations, and the second represents the number of

4,02,5.0

4,03,0.0

70 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

List<RecommendedItem> recommendations = recommender.recommend(2, 3);

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

}

import java.io.File;

import java.util.List;

import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;

import org.apache.mahout.cf.taste.impl.neighborhood.ThresholdUserNeighborhood;

import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;

import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;

import org.apache.mahout.cf.taste.model.DataModel;

import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;

import org.apache.mahout.cf.taste.recommender.RecommendedItem;

import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;

import org.apache.mahout.cf.taste.similarity.UserSimilarity;

public class Recommender {

public static void main(String args[]){

try{

recommendations to be sent. Here is the usage

of recommender() method:

Example Program

Given below is an example program to set recommendation. Prepare the recommendations for the user with

user id 2.

71 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

javac Recommender.java

java Recommender

Compile the program using the following commands:

It should produce the following output:

//Creating data model

DataModel datamodel = new FileDataModel(new File("data")); //data

//Creating UserSimilarity object.

UserSimilarity usersimilarity = new PearsonCorrelationSimilarity(datamodel);

//Creating UserNeighbourHHood object.

UserNeighborhood userneighborhood = new ThresholdUserNeighborhood(3.0,

usersimilarity, datamodel);

//Create UserRecomender

UserBasedRecommender recommender = new

GenericUserBasedRecommender(datamodel, userneighborhood, usersimilarity);

List<RecommendedItem> recommendations = recommender.recommend(2, 3);

for (RecommendedItem recommendation : recommendations) {

System.out.println(recommendation);

}

}catch(Exception e){}

}

}

72 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

Clustering is the procedure to organize elements or items of a given collection into groups

based on the similarity between the items. For example, the applications related to online news

publishing group their news articles using clustering.

Applications of Clustering

 Clustering is broadly used in many applications such as market research, pattern

recognition, data analysis, and image processing.

 Clustering can help marketers discover distinct groups in their customer basis. And they

can characterize their customer groups based on purchasing patterns.

 In the field of biology, it can be used to derive plant and animal taxonomies, categorize

genes with similar functionality and gain insight into structures inherent in populations.

 Clustering helps in identification of areas of similar land use in an earth observation

database.

 Clustering also helps in classifying documents on the web for information discovery.

 Clustering is used in outlier detection applications such as detection of credit card

fraud.

 As a data mining function, Cluster Analysis serves as a tool to gain insight into the

distribution of data to observe characteristics of each cluster.

Using Mahout, we can cluster a given set of data. The steps required are as follows:

 Algorithm You need to select a suitable clustering algorithm to group the elements of a

cluster.

 Similarity and Dissimilarity You need to have a rule in place to verify the similarity

between the newly encountered elements and the elements in the groups.

RecommendedItem [item:3, value:4.5]
RecommendedItem [item:4, value:4.0]

73 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

$ cd HADOOP_HOME/bin

$ start-all.sh

$ hadoop fs -p mkdir /mahout_data
$ hadoop fs -p mkdir /clustered_data

$ hadoop fs -p mkdir /mahout_seq

 Stopping Condition A stopping condition is required to define the point where no

clustering is required.

Procedure of Clustering

To cluster the given data you need to -

 Start the Hadoop server. Create required directories for storing files in Hadoop File

System. (Create directories for input file, sequence file, and clustered output in case of

canopy).

 Copy the input file to the Hadoop File system from Unix file system.

 Prepare the sequence file from the input data.

 Run any of the available clustering algorithms.

 Get the clustered data.

Starting Hadoop

Mahout works with Hadoop, hence make sure that the Hadoop server is up and running.

Preparing Input File Directories

Create directories in the Hadoop file system to store the input file, sequence files, and clustered

data using the following command:

You can verify whether the directory is created using the hadoop web interface in the following

URL - http://localhost:50070/

It gives you the output as shown below:

74 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

$ hadoop fs -put /home/Hadoop/data/mydata.txt /mahout_data/

[Hadoop@localhost bin]$./mahout seqdirectory --help

Copying Input File to HDFS

Now, copy the input data file from the Linux file system to mahout_data directory in the

Hadoop File System as shown below. Assume your input file is mydata.txt and it is in the

/home/Hadoop/data/ directory.

Preparing the Sequence File

Mahout provides you a utility to convert the given input file in to a sequence file format. This

utility requires two parameters.

 The input file directory where the original data resides.

 The output file directory where the clustered data is to be stored.

Given below is the help prompt of mahout seqdirectory utility.

Step 1: Browse to the Mahout home directory. You can get help of the utility as shown below:

75 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

mahout seqdirectory -i <input file path> -o <output directory>

mahout seqdirectory

-i hdfs://localhost:9000/mahout_seq/

-o hdfs://localhost:9000/clustered_data/

mahout canopy -i <input vectors directory>

-o <output directory>

-t1 <threshold value 1>

-t2 <threshold value 2>

mahout canopy -i hdfs://localhost:9000/mahout_seq/mydata.seq
-o hdfs://localhost:9000/clustered_data

-t1 20

-t2 30

Generate the sequence file using the utility using the following syntax:

Example

Clustering Algorithms

Mahout supports two main algorithms for clustering namely:

 Canopy clustering

 K-means clustering

Canopy Clustering

Canopy clustering is a simple and fast technique used by Mahout for clustering purpose. The

objects will be treated as points in a plain space. This technique is often used as an initial step in

other clustering techniques such as k-means clustering. You can run a Canopy job using the

following syntax:

Canopy job requires an input file directory with the sequence file and an output directory where the

clustered data is to be stored.

Example

You will get the clustered data generated in the given output directory.

K-means Clustering

K-means clustering is an important clustering algorithm. The k in k-means clustering

algorithm represents the number of clusters the data is to be

Job-Specific Options:
--input (-i) input Path to job input directory.

--output (-o) output The directory pathname for output.

--overwrite (-ow) If present, overwrite the output directory

76 NARAYANA ENGINEERING COLLEGE | GUDUR Prepared By Mr.N.Koteswara Rao

$MAHOUT_HOME/bin/mahout seq2sparse
--analyzerName (-a) analyzerName The class name of the analyzer

--chunkSize (-chunk) chunkSize The chunkSize in MegaBytes.
--output (-o) output The directory pathname for o/p

--input (-i) input Path to job input directory.

divided into. For example, the k value specified to this algorithm is selected as 3, the algorithm

is going to divide the data into 3 clusters.

Each object will be represented as vector in space. Initially k points will be chosen by the

algorithm randomly and treated as centers, every object closest to each center are clustered.

There are several algorithms for the distance measure and the user should choose the required

one.

Creating Vector Files

 Unlike Canopy algorithm, the k-means algorithm requires vector files as input,

therefore you have to create vector files.

 To generate vector files from sequence file format, Mahout provides

the seq2parse utility.

Given below are some of the options of seq2parse utility. Create vector files using these

options.

After creating vectors, proceed with k-means algorithm. The syntax to run k-means job is as

follows:

K-means clustering job requires input vector directory, output clusters directory, distance

measure, maximum number of iterations to be carried out, and an integer value representing

the number of clusters the input data is to be divided into.

mahout kmeans -i <input vectors directory>
-c <input clusters directory>

-o <output working directory>

-dm <Distance Measure technique>
-x <maximum number of iterations>

-k <number of initial clusters>

